Aspect of physical principles of the proton therapy with inclusion of nuclear interactions

Waldemar H Ulmer, Alejandro Carabe-Fernandez

Abstract


The radiotherapy of malignant diseases has reached much progress during the past decade. Thus, intensity modulated radiation therapy (IMRT) and VMAT (Rapid Arc) now belong to the standard modalities of tumor treatment with high energy radiation in clinical practice. In recent time, the particle therapy (protons and partially with heavy carbon ions) has reached an important completion of these modalities with regard to some suitable applications. In spite of this enrichment essential features need further research activities and publications in this field: Nuclear reactions, the role of the released neutrons and the distinction between elastic and inelastic scatter of protons at nuclei as specific contributions of the total nuclear cross-section Qtot(E); transmutations of nuclear fissions products (e.g. Cs137) induced by protons in order to drastically reduce the half-times (transmutations); electron capture of positively charged nuclei at lower projectile energies (e.g. in the environment of the Bragg peak and at the distal end of the particle track); correct dose delivery in scanning methods by accounting for the influence of the lateral scatter of beam-lets. Deconvolution methods can help to overcome these problems, which already occur in a rather significant manner in radiotherapy of very small photon beams.

Keywords


Bragg-Kleeman rule, Bethe-Bloch equations, scatter theory, convolutions and deconvolutions, nuclear interactions and cross-sections

Full Text:

PDF

References


Ulmer W. Notes of the editorial board on the role of medical physics in radiotherapy. Int. J. Cancer TherOncol. 2013; 1:01014. DOI: 10.14319/ijcto.0101.4.

Ulmer W. Increasing importance of proton therapy. J. Proton Therapy. 2015; 1:112.DOI: 10.14319/jpt.11.2.

Ulmer W, Schaffner B. Foundation of an analytical proton beamlet model for inclusion in a general proton dose calculation system. Rad. Phys. Chem. 2011; 80: 378 – 402.

Ulmer W, Matsinos E. Theoretical methods for the calculation of Bragg curves and 3D distribution of proton beams. Eur. Phys. J. Special Topics. 2010; 190: 1 – 81.

Ulmer W, Matsinos E. A Calculation Method of Nuclear Cross-Sections of Proton Beams by the Collective Model and the Extended Nuclear-Shell Theory with Applications to Radiotherapy and Technical Problems. J. of Nuclear and Particle Physics. 2012; 2(3): 42-56.

Ulmer W. Inverse problem of a linear combination of Gaussian convolution kernels (deconvolution) and some applications to proton/photon dosimetry and image processing. Inverse Problems. 2010; 26: 085002.

Ulmer W. Deconvolution of a linear combination of Gaussian Kernels: Applications to Radiation Physics and Image Processing.In: Image and Video Processung - An Introductory Guide (Mishra A, Nawaz Z, Shahdid Z. Eds.), iConcept Press. 2013; 111 - 144.

Ulmer W, Kaissl W. The inverse problem of a Gaussian convolution and its application to the finite size of the measurement chambers and detectors in photon and proton dosimetry. Phys. Med. Biol. 2003; 48: 707 - 721.

ICRU 1993. Stopping powers and ranges for protons and a-particles. ICRU Report, 1993; 49: Bethesda, MD.

Bortfeld T. An analytical approximation of the Bragg curve for therapeutic proton beams. Med. Phys. 1997; 24 (12): 2024.

Hong L, Goitein M, Bucciolini M, Comiskey R, Gottschalk B, Rosenthal S, Serago C, Urie A. A pencil beam algorithm for proton dose calculations. Phys. Med. Biol. 1996; 41: 1305 - 1331.

Ciangaru G, Polf J, Bues M, Smith A. Benchmarking analytical calculations of proton doses in heterogeneous matter. Med. Phys. 2005; 32: 3511.

Deasy J. A proton dose calculation algorithm for conformal therapy simulations based on Moliere’s theory of lateral deflections. Med. Phys. 1998; 25: 476.

Petti P. Evaluation of a pencil-beam dose calculation technique for charged particle radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1996; 35: 1049.

Schaffner B, Pedroni E, Lomax A. Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation. Phys. Med. Biol. 1999; 44: 27.

Russell KR, Isacson U, Saxner M, Ahnesjö A, Montelius A, Grusell E, Dahlgren C, Lorin S, Glimelius B. Implementation of pencil kernel and depth penetration algorithms for treatment planning of proton beams. Phys. Med. Biol. 2000; 45: 9.

Hollmark M, Uhrdin J, Belkic D, Gudowska I, Brahme A. Influence of multiple scattering and energy loss straggling on the absorbed dose distributions of therapeutic light ion beams: 1. analytical pencil beam model. Phys. Med. Biol. 2004; 49(3): 247.

Paganetti H. Nuclear interactions in proton therapy: dose and relative biological effect distributions originating from primary and secondary particles. Phys. Med. Biol. 2002; 47: 747.

Tourovsky A, Lomax A, Schneider U, Pedroni E. Monte Carlo dose calculation for spot scanned proton therapy. Phys. Med. Biol. 2005; 50: 971.

Carlsson K, Andreo P, Brahme A. Monte Carlo and analytical calculation of proton pencil beams for computerized treatment plan optimization. Phys. Med. Biol. 1997; 42; 103.

Eclipse TM. User Manual – Varian Treatment Planning System – Varian Medical Systems Inc., 2008. http://www.varian.com/us/oncology/radiation_oncology/eclipse/ protons/calculation_ model/

Schaffner B. Proton dose calculation based on in-air fluence measurements. Phys. Med. Biol. 2008; 53 (15): 4550.

GEANT4-documents, 2005. http://geant4.web.cern/geant4/G4UsersDocuments/Overview/html/

Evans RD. The Atomic Nucleus. Krieger RE, Malabar FL, 1982.

Boon SN. Dosimetry and quality control of scanning proton beams. Thesis, Rijks University Groningen, 1998.

Rahu MR. Heavy Particle Radiotherapy. Academic, New York, 1980.

Bethe HA, Ashkin J. Passage of Radiations through Matter. In: Experimental Nuclear Physics. Segrè, E. (Ed.). Wiley. New York. 1953, p. 176.

Segrè E. Nuclei and Particles. New York (N.Y.): Benjamin, 1964.

Bethe HA. Quantenmechanik der Ein- und Zweikörperprobleme. Ann. Physik. 1930; 5: 325 – 355.

Bloch F. Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie. Ann. Physik. 1933; 16: 285 - 292.

Abramowitz M, Stegun IA. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Washington DC: National Bureau of Standards. 1970.

Feynman RP. Quantum electrodynamics - A Lecture Note and Reprint Volume. New York (N. Y.), Benjamin. 1962, p. 148.

Ulmer W. Theoretical aspects of energy range relations, stopping power and energy straggling of protons. Rad. Phys. Chem. 2007; 76: 1089 – 1107.

Schneider U, Pedroni E, Lomax A. The calibration of CT Hounsfield units for radiotherapy treatment planning. Phys. Med. Biol. 1996; 41: 111 - 124.

Zhang R, Newhauser WD. Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation. Phys. Med. Biol.. 2009; 54: 1383 – 95.

Jiang H, Paganetti H. Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data. Med. Phys. 2004; 31: 2811.

Bethe HA. Molière’s theory of multiple scattering. Phys. Rev. 1953; 89: 1256.

Molière GZ. Theorie der Streuung schneller geladener Teilchen III. Z Naturforschung. 1955; 10a: 177-200.

Berger MJ, Coursey JS, Zucker MA. ESTAR, PSTAR and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons and α-particles (version 1.2.2). National Institute of Standards and Technology, Gaithersburg, MD, 2000.

Chadwick MB, Young PG. Proton nuclear interactions with 12C, 14N, 16O, 31P and 40Ca for radiotherapy applications: evaluated data libraries to 250 MeV Los Alamos National Laboratory Report LAUR-96-1649, 1996.

Flügge S. Erweiterung der Breit-Wigner-Formel auf höhere Quantenzustände. Z. Naturforschung. 1948; 3a: 97-110.

Von Neumann J. Mathematical Foundations of Quantum Mechanics. Princeton, NJ: Princeton University Press. 1955.

Steinber S. Lie series, Lie transformations and their applications. Lecture Notes in Physics. 1986; (250): Springer press Berlin. p. 45.

Matsinos E. Collimator effects in proton therapy planning. /http://arxiv.org/abs/0811.1076S, 2008.

Gottschalk B, Koehler AM, Schneider RJ, Sisterson JM, Wagner MS. Multiple Coulomb scattering of 160 MeV protons. Nucl. Instrum. Methods.1993; B74: 467.

Gottschalk B, R. Platais R, Platais H. A test of Monte Carlo nuclear models. Med. Phys. 1999; 26: 2597 – 2604.

Highland VL. Practical remarks on multiple scattering. Nuclear Instruments Methods. 1975; 129: 497.

Ulmer W, Pyyry J, Kaissl W. A 3D superposition/convolution algorithm and its foundation on Monte-Carlo calculations. Phys. Med. Biol. 2005; 50: 1767 - 90.

Ulmer W. The Role of Electron capture and energy exchange of positively charged particles passing through matter. J Nuclear and Particle Phys. 2012; 2: 77 - 86.

Sigmund P. Charge dependent electronic stopping power of swift non-relativistic heavy ions. Phys. Rev. 1997; A56: 3781 – 3793.

Kraft G. Tumor therapy with heavy charged particles. Progress in Particle Nuclear Phys. 2000; 45: 473 – 544.

Sihver L, Schardt D, Kanai T. Depth dose distributions of high-energy Carbon, Oxygen and Neon Beam in Water. Jap. J. Med. Phys. 1998; 18: 1 – 21.

Kusano Y, Kanai T, Yona S, Komori M, Ikeda N, Tachikawa Y, Ito A, Uchida H. Field-size dependence of doses of therapeutic carbon beams. Med. Phys. 2007; 34: 4016 – 4022.

Bichsel H, Hiraoka T, Omata K. Aspects of Fast-Ion Dosimetry. Radiation Research. 2000; 153: 208 – 215.

Ziegler JF, Manoyan JM. The Stopping of Ions in Compounds. Nuclear Instr. Meth. 1998; B35: 215 – 227.

Milner RG, The HeIIIclusters in light nuclei. Nucl. Phys. 1990; A588: 599 - 620.

Heisenberg W. Zum Aufbau der Atomkerne und der starken Wechselwirkung. Z. Physik. 1935; 96; 473 - 488.

Elliott JP. The Nuclear Shell Theory and its relation with other models. Wien: International Atomic Energy Agency. 1963.

Meyer-Göppert M, Jensen JHD. Nuclear Shell Theory. Wiley New York. 1970.

Feynman RP. Photon - Hadron - Interaction. Benjamin, New York. 1972.

Ulmer W. A new calculation formula of the nuclear cross-section of therapeutic protons. Int. J. Cancer TherOncol. 2014; 2(2): 020211, DOI: 10.14319/ijcto.0202.11.

Ulmer W. Characterization of specific nuclear reaction channels by deconvolution in the energy space of the total nuclear cross-section of protons - applications to proton therapy and technical problems (transmutations). J. Proton Therapy. 2016; 2(1): 212. DOI: 10.14319/jpt.21.2.

Wilkens JJ, Oelfke U. Three-dimensional LET calculations for treatment planning of proton therapy. Z. Med. Phys. 2004; 14: 41 - 66.

Wilkens JJ, Oelfke U. A phenomenological model for the relative biological effectiveness. Phys. Med. Biol. 2004; 49: 2811 – 2825

Ulmer W. Quantum theory of coupled electromagnetic circuits - extensions and transitions to the continuum and applications to problems with spin and nuclear physics. Int. J. of Innovations in Science & Mathematics. 2015; 3(6): ISSN (Online) 2347 - 9051.




Copyright (c) 2017 Waldemar H Ulmer, Alejandro Carabe-Fernandez

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

-------------------------------------------

© Journal of Proton Therapy (ISSN 2469-5491)

To make sure that you can receive messages from us, please add the 'protonjournal.org' and 'protonjournal.com' domains to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', please check your 'bulk mail' or 'junk mail' folders.